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Critical dynamics of the Baxter-Wu model
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The short-time behavior of the Baxter-Wu model is investigated through the relaxation of the order param-
eter at the critical temperature. We considered Monte Carlo simulations for this model on a triangular lattice,
and we studied relaxation starting from the fourfold-degenerate ground state. Using the short-time scaling
formalism we found the static critical exponegt@and v of the model and the corresponding dynamical critical
exponentz. The values of the static exponents we find agree with the exact ones. To the best of our knowledge,
this is the first determination of the dynamical critical exponent of the Baxter-Wu model.
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I. INTRODUCTION plied considering different initial states belonging to the de-
generate ground state; second, we want to calculate the dy-
The well known work of Janssen, Schaub, and Schmitthamical critical exponent of this model because, as far as we
mann[1] established that a system relaxing by a dynamicaknow, it was not yet determined. From our Monte Carlo
process, that does not conserve the order parameter, exhibgnulations we obtain the static critical exponents of the
universal behavior at the early stages of its evolution towardnodel that are in agreement with the well-known results
equilibrium states. The crucial point in their theory is that thefound in the literature. The values we found for the critical
system must be out of equilibrium, exactly at its critical exponents are independent of the ground-state configuration,
point, in order that we can observe an universal behavionve choose to allow the system relax at the critical tempera-
These ideas have been verified in some models, for which wigire. On the other hand, despite the fact that the underlying
know the exact value of the critical temperature. For in-Symmetry of the Baxter-Wu model is different from that of
stance, in recent years, many studies were performed for tHBe usual Ising model, the dynamical critical exponents of
kinetic Ising and Potts modef2-5]. In this work we inves- these two models appear to be the same. In Sec. I, we
tigate the short-time critical dynamics of the Baxter-Wu presentthe model and the scaling relations used in our short-
model, for which the critical temperature is exactly known. time analysis. In Sec. lll, we present our Monte Carlo simu-
This model was introduced by Wood and Griffifit§ as a  lations and the values obtained for the critical exponents, and
model showing a continuous phase transition but that doe§ Sec. IV we present our conclusions.
not exhibit a invariance by a global inversion of all spins.
The model, whose Hamiltonian takes into account only in- II. MODEL AND SCALING RELATIONS
teractions between three nearest-neighbor Ising spins vari- ) ) i .
ables on a triangular lattice, was solved exactly by Baxter [N this section we present the short-time dynamics for the
and Wu[7]. In the thermodynamic limit, the partition func- Baxter-Wu model. The transition rate between states foII(_)W
tion of the model was related to the generating function of 4he well-known Glauber kinetics, where only a single spin
site-coloring problem on a hexagonal lattice. This model isc@n be flipped per unit of time. The Hamiltonian of the
self-dual, with the same critical temperature as the Isingd@xter-Wu model is
model on a square lattice. In addition, its leading exponents
are the same as those.exhit.)ited by thg four-state Potts model H=—] 2 7,00, (1)
[8]. Recent conformal invariance studigk10] showed that (" Tk
the four-state Potts model and the Baxter-Wu model have the
same operator content, and this fact put them in the samehereo;==*1 are the spin variables, and the sum extends
universality class of critical behavior. Although the over the elementary triangles of the triangular lattites the
Baxter-Wu model does not present invariance by a globamagnitude of the coupling among three nearest-neighbor
inversion of all spins, it displays a special symmetry by aspins. The triangular lattice can be decomposed into three
suitable inversion of two spins belonging to two of the threesublattices, and each spin of a given sublattice interacts with
sublattices into which the original triangular lattice can besix nearest-neighbor spins belonging to the two other sublat-
decomposed9]. Then the ground-state is fourfold degener-tices. This model is self-dual, and exhibits the same critical
ate: three of these states have a magnetization per site equamperature as the Ising model on a square lattice. The criti-
to — 2, while the remaining state has a magnetization equatal temperature is given by T.=2/In(1++/2) in units ofJ.
to 1. Our interest in studying this model by the short-timeThe equilibrium critical exponentf8] associated with the
formalism is twofold: first, as we know exactly the location correlation length and the order parameter are2/3 and
of the critical point of the model, the formalism can be ap-B8=1/12, respectively. For this model the order parameter is
simply taken as the mean value of the magnetization of the
three sublattices. In general, the studies concerning the short-
*Email address: wagner@fisica.ufsc.br time dynamics assume that the initial state is completely dis-

1063-651X/2001/6@}/0421014)/$20.00 63042101-1 ©2001 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW E 63 042101

ordered at the critical point, with a vanishing or a very small M@ =t=2vz\ ()1 =17, (8)
value of the order parameter. Here we consider a dynamical

relaxation process starting from one of the possible configuwhereM(?)(1,x)~x9, because at the beginning of the time
rations of the ground state. That is, we considered relaxatioBvolution the spatial correlation length is very small. There-

processes which initiate with magnetization 1-05. Usu-  fore, Eg.(6) becomes, for a fixed and large valuelgf

ally, for systems with a nondegenerate ground state, the ini-

tial state is always that with magnetization equal to 1. This U(t)~t"C3, 9

approach was successfully applied to the three-dimensional

Ising model[11], extended to the quantum domd&m one-  wherec;=d/z, andd is the spatial dimensionality of the spin

dimensional transverse Ising model at zero temperaturesystem. Therefore, by measuring the three independent ex-

[12], and applied to a competing Ising model in the presencgonentsc,, ¢,, andcy, we can obtain the statigd(v) and

of a magnetic field13]. the dynamicalz) critical exponents. This procedure is easier
Let us consider the equations that describe the relaxatiofp implement than the usual one, where we need to prepare

of the Baxter-Wu model from its ground state toward equi-the system to have, at the initial time, very small values of

librium. Then the initial magnetization at time=0 can be 1  the magnetization and correlation length.

or — 3 depending on which state we choose to start the re-

Iaxgtlon. Vgry near the critical point we can write the fol- Ill. MONTE CARLO SIMULATIONS
lowing scaling form for thekth moment of the order param-
eter, We have measured the magnetizatidhg) and M 3)(t)

for lattice sizes with linear dimensions up to=258. We
M®t,7,L)=b"¥""M®(b~?%,bY7,b"'L), (20  choose this value to be a multiple of 3, because we divided
) » the triangular lattice into three independent sublattices. For
where 7=(T—T.)/T, is the reduced critical temperatute, e |attice sizd =258, we have considered 500 Monte Carlo
is the spatial rescaling factor, ahdis the linear I_qttlge Size. gteps, and we have seen that 2000 samples are sufficient to
The exponentg and v are the well-known equilibrium ex-  gptain good statistics. We have taken, for the transition prob-

ponents defined above, amds the dynamical critical expo-  gpility rate among states, the following one-spin flip Glauber
nent. This scaling relation for the order parameter is S'm”arprescription[14]:

to the one used in the long-time regime studies. Here it is

used to investigate the macroscopic short-time regime, as in 1 1 (5

the work of Jasteet al.[11]. For k=1, we have the proper wi(o)= _’ 1—o?tan{—( > UbUC)
magnetization, and choosing the scaling factor tdbe?, 2 keT | T

we obtain

] (10

where the spin to be flipped is thth spin of the sublattice.
M(t,7) =t A"?M(1tY?7), (3 In the above sum we considered all six nearest-neighbor
N _ _ o pairs of spins belonging to sublatticesindc, and which are
where it is assumed that the linear dimensliois very large.  nejghbors of the spie?. kg is Boltzmann’s constant, arfl
At the critical p0|'nt (r=0), the magnetization exhibits the 5 the absolute temperature of heat bath.
power-law behavior Figure 1 shows the log-log plot of the magnetization ver-
M (1) ~t~Ct @ sus time. In this figure we represent the data obtained from
' two different initial conditions for the fourfold-degenerate
ground state: one with magnetizatidn(0)=1 (curve a)
gnd the other witiM (0)= — 3 (curveb). For the latter value
of the magnetization, there are three distinct configurations
of the ground state, and the data correspond to the absolute
DM(t)~1tC2, (5)  Vvalue of the mean obtained from these configurations. In the
same figure we also show the best linear fit to the data points.
wherec,=1/vz, andDM(t) is the logarithmic derivative of From the slope of the curva we found the valuec?
M (t,7) with respect tor at the critical point. As the magne- =0.057&2), while for curve b we found c‘j=0.066&3).
tization is different from zero at the initial stages of the evo-Figure 2 exhibits the log-log plots of the logarithmic deriva-
lution, we can also define a time-dependent second-order ctive of the magnetization with respect to the reduced tem-

wherec,= B/vz. Taking the derivative of Eq(2) with re-
spect tor and choosing the same scaling factor as before, wi
can write the following relation at the critical point:

mulant. It is given by perature at the critical point, versus time. The slope of these
curves gives the values aof,. For the initial condition
M®) M(0)=1 we obtainci=0.76§3), and for thenitial condi-
U= - ®  tion M(0)=—1, c5=0.8174). Finally, Fig. 3 shows the

log-log plots of the second-order cumulant versus time, and
From Eq.(2), at the critical point ¢=0), takingb=t?, and the corresponding best fits to the data points. The slopes are

for large values of., we can write that given byc§=0.967(3) anctj=1.021).
Therefore, the critical exponenf3, v, andz can be de-
M2~t~2hIvz, (7)  termined for the Baxter-Wu model. Considering the initial

042101-2



BRIEF REPORTS

0.1

—r
100 1000

1
FIG. 1. Log-log plot of the absolute magnetizatibh(t) vs
time, in units of Monte Carlo stegdC'’s), at the critical tempera-
ture of the Baxter-Wu model. Curva shows data points for

M(0)=1, and curveb initial magnetizationM(0)=— % The
straight lines give the best fit to the data points.

PHYSICAL REVIEW E 63 042101

1E-5

|
100 1000

t

10

FIG. 3. Log-log plot of the second-order cumuldd(t), vs
time, at the critical temperature. The straight lines give the best fit
to the data points. Curva M(0)=1. Curveb: M(0)= — %

z=2.07£0.01.

condition M(0)=1, which corresponds to the coefficients On the other hand, for the initial conditidvi (0)= — 3, the

¢, we obtain the following values:
B=0.0753-0.0014,

r=0.629+0.005,

and

10

10 1000

FIG. 2. Log-log plot of the logarithmic derivative of the mag-
netization with respect to the reduced temperaidii(t) vs time,

critical exponents, which are related to the coefficiecfts
are given by

B=0.0817-0.0023,
v=0.621+0.009,
and
z=1.96+0.02.

Within the statistical precision of our measurements, the
values we found for the static critical exponemsand v
agree with the exact on¢8]. On the other hand, the values
we found for the dynamical critical exponenare very close
to that of the Ising model when the transition rate is of the
Glauber type. This appear to indicate that the dynamical uni-
versality class is not affected by the underlying symmetry of
the Hamiltonian. When the relaxation process is driven by
the single spin-flip Glauber prescription, which does not con-
serve the order parameter, the evolution toward equilibrium
states proceeds with the same ratdang and Landa{il5]
performed Monte Carlo simulations for the two-dimensional
g-state Potts models, witlp=2, 3, and 4. Their results seems
to confirm that the dynamical critical exponentvhich gov-
erns the long-time relaxation, is the same for the three con-
sidered values of. For instance, their best estimates for the
g=4 Potts model iz=2.19. As the values we found far
are close to these figures, this support the idea that the four-
state Potts model and the Baxter-Wu model are also in the
same dynamical universality class.

at the critical temperature. The straight lines give the best fit to the Our results also indicate that the scaling laws for the

data points. Curve: M(0)=1. Curveb: M(0)=— 3.

short-time dynamics are not very sensitive to the initial value
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1 nent z, we obtain z=1.38 [M(0)=—-1] and z=2.33
] [M(0)= +1/3]. Relating these values with those found for
the slopes of Fig. 4 we found th@/ »=0.44 M(0)=—1)
and B/v=0.08 (M(0)=+1/3). Although the state with
M(0)=—1 be completely ordered, the results obtained are
very bad. On the other hand, if the initial state is selected
from the ground-state set, it gives good results, even if it is
not completely ordered, as is the case of cumvia Fig. 1.
Usually, the exponent is determined by the long-time re-
gime of the relaxation process by measuring the decay of the
magnetization of the system. This procedure presents some
difficulties because at the critical point the relaxation times
are very long, and we need simulate very large systems to
obtain a reliable value af The present method, that exploits
the initial stages of evolution of the system, is free of the
critical slowing down difficulties, and can be applied to sys-
tems not too large. The price paid using this method is the
statistics: we need to consider a very large number of
T o T samples in order to obtain critical exponents almost free of
noise.

0.1 4

t

FIG. 4. Log-log plot of the absolute magnetizatibm(t) vs IV. CONCLUSIONS

time, in units of Monte Carlo stegdC'’s), at the critical tempera- We have employed the short-time dynamics to investigate
ture of the Baxter-Wu model. Curva shows data points for  the critical properties of the Baxter-Wu model on a triangular
M(0)=—1, and curveb the initial magnetizatiomM (0)=+3. The  |attice. Using Monte Carlo simulations with the Glauber
straight lines give the best fit to the data points. transition rate, we found static critical exponergtsand v

fth tizati What o b . ant . that agree with the exact ones known for this model. We also
of the magnetization. at seems 10 be very important Iy iarmined the dynamical critical exponerdf the model; to
this approach is to choose an initial state which is a groun he best of our knowledge, an estimate of this exponent for

state of the system. We call attention that in the Iiterature[h ;
- . . e Baxter-Wu model has not yet been obtained. Although
[11,13 the initial state is chosen to be one that is completely, y g

dored. H thi K Il wh th he two-dimensional Ising model and the Baxter-Wu model
ordered. However, this works very well Wnenever the ground, o sent gitferent Hamiltonian symmetries, belonging to dif-
state is nondegenerate. Nevertheless, the condition of bei

letel dered i t sufficient to qi labl | rent equilibrium universality classes, they appear to exhibit
compietely ordered IS not sutlicient fo give reliable valuesy,, ¢qme dynamical critical behavior. We also have shown

for t.h? critical exponents in the short_—tlme regime. Elgure 4that the initial value of the magnetization is irrelevant for the
exh|b|}s a Iog_—I(.)g plot O.f the magnetization versus time forscaling relations involved in the relaxation process. How-
two different initial conf|gura}t|ons, Wh'Ch do not belong to ever, the initial configuration must be one chosen from the
the ground-state set. Curaggives the time evolution for the ground state of the model

initial state withM(0)=—1, and curveb gives the time '

evolution for the initial stateM(0)=+1/3. The slope of
curvesa and b are 0.316 and 0.035, respectively. On the
other hand, from the plot of the second-order cumulants, This work was supported by the Brazilian agencies CNPq
which gives a direct value for the dynamical critical expo-and FINEP.
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