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Critical dynamics of the Baxter-Wu model
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The short-time behavior of the Baxter-Wu model is investigated through the relaxation of the order param-
eter at the critical temperature. We considered Monte Carlo simulations for this model on a triangular lattice,
and we studied relaxation starting from the fourfold-degenerate ground state. Using the short-time scaling
formalism we found the static critical exponentsb andn of the model and the corresponding dynamical critical
exponentz. The values of the static exponents we find agree with the exact ones. To the best of our knowledge,
this is the first determination of the dynamical critical exponent of the Baxter-Wu model.
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I. INTRODUCTION

The well known work of Janssen, Schaub, and Schm
mann@1# established that a system relaxing by a dynam
process, that does not conserve the order parameter, ex
universal behavior at the early stages of its evolution tow
equilibrium states. The crucial point in their theory is that t
system must be out of equilibrium, exactly at its critic
point, in order that we can observe an universal behav
These ideas have been verified in some models, for which
know the exact value of the critical temperature. For
stance, in recent years, many studies were performed fo
kinetic Ising and Potts models@2–5#. In this work we inves-
tigate the short-time critical dynamics of the Baxter-W
model, for which the critical temperature is exactly know

This model was introduced by Wood and Griffiths@6# as a
model showing a continuous phase transition but that d
not exhibit a invariance by a global inversion of all spin
The model, whose Hamiltonian takes into account only
teractions between three nearest-neighbor Ising spins
ables on a triangular lattice, was solved exactly by Bax
and Wu@7#. In the thermodynamic limit, the partition func
tion of the model was related to the generating function o
site-coloring problem on a hexagonal lattice. This mode
self-dual, with the same critical temperature as the Is
model on a square lattice. In addition, its leading expone
are the same as those exhibited by the four-state Potts m
@8#. Recent conformal invariance studies@9,10# showed that
the four-state Potts model and the Baxter-Wu model have
same operator content, and this fact put them in the s
universality class of critical behavior. Although th
Baxter-Wu model does not present invariance by a glo
inversion of all spins, it displays a special symmetry by
suitable inversion of two spins belonging to two of the thr
sublattices into which the original triangular lattice can
decomposed@9#. Then the ground-state is fourfold degene
ate: three of these states have a magnetization per site e
to 2 1

3 , while the remaining state has a magnetization eq
to 1. Our interest in studying this model by the short-tim
formalism is twofold: first, as we know exactly the locatio
of the critical point of the model, the formalism can be a
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plied considering different initial states belonging to the d
generate ground state; second, we want to calculate the
namical critical exponent of this model because, as far as
know, it was not yet determined. From our Monte Ca
simulations we obtain the static critical exponents of t
model that are in agreement with the well-known resu
found in the literature. The values we found for the critic
exponents are independent of the ground-state configura
we choose to allow the system relax at the critical tempe
ture. On the other hand, despite the fact that the underly
symmetry of the Baxter-Wu model is different from that
the usual Ising model, the dynamical critical exponents
these two models appear to be the same. In Sec. II,
present the model and the scaling relations used in our sh
time analysis. In Sec. III, we present our Monte Carlo sim
lations and the values obtained for the critical exponents,
in Sec. IV we present our conclusions.

II. MODEL AND SCALING RELATIONS

In this section we present the short-time dynamics for
Baxter-Wu model. The transition rate between states foll
the well-known Glauber kinetics, where only a single sp
can be flipped per unit of time. The Hamiltonian of th
Baxter-Wu model is

H52J (
^ i , j ,k&

s is jsk , ~1!

wheres i561 are the spin variables, and the sum exten
over the elementary triangles of the triangular lattice.J is the
magnitude of the coupling among three nearest-neigh
spins. The triangular lattice can be decomposed into th
sublattices, and each spin of a given sublattice interacts w
six nearest-neighbor spins belonging to the two other sub
tices. This model is self-dual, and exhibits the same criti
temperature as the Ising model on a square lattice. The c
cal temperature is given bykBTc52/ln(11A2) in units ofJ.
The equilibrium critical exponents@8# associated with the
correlation length and the order parameter aren52/3 and
b51/12, respectively. For this model the order paramete
simply taken as the mean value of the magnetization of
three sublattices. In general, the studies concerning the s
time dynamics assume that the initial state is completely
©2001 The American Physical Society01-1
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ordered at the critical point, with a vanishing or a very sm
value of the order parameter. Here we consider a dynam
relaxation process starting from one of the possible confi
rations of the ground state. That is, we considered relaxa
processes which initiate with magnetization 1 or2 1

3 . Usu-
ally, for systems with a nondegenerate ground state, the
tial state is always that with magnetization equal to 1. T
approach was successfully applied to the three-dimensi
Ising model@11#, extended to the quantum domain~a one-
dimensional transverse Ising model at zero temperat!
@12#, and applied to a competing Ising model in the prese
of a magnetic field@13#.

Let us consider the equations that describe the relaxa
of the Baxter-Wu model from its ground state toward eq
librium. Then the initial magnetization at timet50 can be 1
or 2 1

3 depending on which state we choose to start the
laxation. Very near the critical point we can write the fo
lowing scaling form for thekth moment of the order param
eter,

M (k)~ t,t,L !5b2kb/nM (k)~b2zt,b1/nt,b21L !, ~2!

wheret5(T2Tc)/Tc is the reduced critical temperature,b
is the spatial rescaling factor, andL is the linear lattice size
The exponentsb andn are the well-known equilibrium ex
ponents defined above, andz is the dynamical critical expo
nent. This scaling relation for the order parameter is sim
to the one used in the long-time regime studies. Here i
used to investigate the macroscopic short-time regime, a
the work of Jasteret al. @11#. For k51, we have the prope
magnetization, and choosing the scaling factor to beb5t1/z,
we obtain

M ~ t,t!5t2b/nzM ~1,t1/nzt!, ~3!

where it is assumed that the linear dimensionL is very large.
At the critical point (t50), the magnetization exhibits th
power-law behavior

M ~ t !;t2c1, ~4!

wherec15b/nz. Taking the derivative of Eq.~2! with re-
spect tot and choosing the same scaling factor as before,
can write the following relation at the critical point:

DM ~ t !;tc2, ~5!

wherec251/nz, andDM (t) is the logarithmic derivative of
M (t,t) with respect tot at the critical point. As the magne
tization is different from zero at the initial stages of the ev
lution, we can also define a time-dependent second-orde
mulant. It is given by

U~ t !5
M (2)

~M !2
21. ~6!

From Eq.~2!, at the critical point (t50), takingb5t1/z, and
for large values ofL, we can write that

M2;t22b/nz, ~7!
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M (2)5t22b/nzM (2)~1,t21/zL !, ~8!

whereM (2)(1,x);x2d, because at the beginning of the tim
evolution the spatial correlation length is very small. The
fore, Eq.~6! becomes, for a fixed and large value ofL,

U~ t !;t2c3, ~9!

wherec35d/z, andd is the spatial dimensionality of the spi
system. Therefore, by measuring the three independent
ponents,c1 , c2, andc3, we can obtain the static (b,n) and
the dynamical~z! critical exponents. This procedure is eas
to implement than the usual one, where we need to prep
the system to have, at the initial time, very small values
the magnetization and correlation length.

III. MONTE CARLO SIMULATIONS

We have measured the magnetizationsM (t) andM (2)(t)
for lattice sizes with linear dimensions up toL5258. We
choose this value to be a multiple of 3, because we divid
the triangular lattice into three independent sublattices.
the lattice sizeL5258, we have considered 500 Monte Car
steps, and we have seen that 2000 samples are sufficie
obtain good statistics. We have taken, for the transition pr
ability rate among states, the following one-spin flip Glaub
prescription@14#:

wi~s!5
1

2 H 12s i
atanhF 1

kBT S (
1

6

sbscD G J , ~10!

where the spin to be flipped is thei th spin of the sublatticea.
In the above sum we considered all six nearest-neigh
pairs of spins belonging to sublatticesb andc, and which are
neighbors of the spins i

a . kB is Boltzmann’s constant, andT
is the absolute temperature of heat bath.

Figure 1 shows the log-log plot of the magnetization v
sus time. In this figure we represent the data obtained fr
two different initial conditions for the fourfold-degenera
ground state: one with magnetizationM (0)51 ~curve a)
and the other withM (0)52 1

3 ~curveb). For the latter value
of the magnetization, there are three distinct configurati
of the ground state, and the data correspond to the abso
value of the mean obtained from these configurations. In
same figure we also show the best linear fit to the data po
From the slope of the curvea we found the valuec1

a

50.0578(2), while for curve b we found c1
b50.0668(3).

Figure 2 exhibits the log-log plots of the logarithmic deriv
tive of the magnetization with respect to the reduced te
perature at the critical point, versus time. The slope of th
curves gives the values ofc2. For the initial condition
M (0)51 we obtainc2

a50.768(3), and for theinitial condi-
tion M (0)52 1

3 , c2
b50.817(4). Finally, Fig. 3 shows the

log-log plots of the second-order cumulant versus time, a
the corresponding best fits to the data points. The slopes
given byc3

a50.967(3) andc3
b51.02(1).

Therefore, the critical exponentsb, n, andz can be de-
termined for the Baxter-Wu model. Considering the init
1-2
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condition M (0)51, which corresponds to the coefficien
ci

a , we obtain the following values:

b50.075360.0014,

n50.62960.005,

and

FIG. 1. Log-log plot of the absolute magnetizationM (t) vs
time, in units of Monte Carlo steps~MC’s!, at the critical tempera-
ture of the Baxter-Wu model. Curvea shows data points for
M (0)51, and curveb initial magnetization M (0)52

1
3 . The

straight lines give the best fit to the data points.

FIG. 2. Log-log plot of the logarithmic derivative of the mag
netization with respect to the reduced temperatureDM (t) vs time,
at the critical temperature. The straight lines give the best fit to
data points. Curvea: M (0)51. Curveb: M (0)52

1
3 .
04210
z52.0760.01.

On the other hand, for the initial conditionM (0)52 1
3 , the

critical exponents, which are related to the coefficientsci
b ,

are given by

b50.081760.0023,

n50.62160.009,

and

z51.9660.02.

Within the statistical precision of our measurements,
values we found for the static critical exponentsb and n
agree with the exact ones@8#. On the other hand, the value
we found for the dynamical critical exponentz are very close
to that of the Ising model when the transition rate is of t
Glauber type. This appear to indicate that the dynamical u
versality class is not affected by the underlying symmetry
the Hamiltonian. When the relaxation process is driven
the single spin-flip Glauber prescription, which does not co
serve the order parameter, the evolution toward equilibri
states proceeds with the same ratez. Tang and Landau@15#
performed Monte Carlo simulations for the two-dimension
q-state Potts models, withq52, 3, and 4. Their results seem
to confirm that the dynamical critical exponentz, which gov-
erns the long-time relaxation, is the same for the three c
sidered values ofq. For instance, their best estimates for t
q54 Potts model isz52.19. As the values we found forz
are close to these figures, this support the idea that the f
state Potts model and the Baxter-Wu model are also in
same dynamical universality class.

Our results also indicate that the scaling laws for t
short-time dynamics are not very sensitive to the initial va
e

FIG. 3. Log-log plot of the second-order cumulantU(t), vs
time, at the critical temperature. The straight lines give the bes
to the data points. Curvea: M (0)51. Curveb: M (0)52

1
3 .
1-3
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of the magnetization. What seems to be very importan
this approach is to choose an initial state which is a gro
state of the system. We call attention that in the literat
@11,13# the initial state is chosen to be one that is complet
ordered. However, this works very well whenever the grou
state is nondegenerate. Nevertheless, the condition of b
completely ordered is not sufficient to give reliable valu
for the critical exponents in the short-time regime. Figure
exhibits a log-log plot of the magnetization versus time
two different initial configurations, which do not belong
the ground-state set. Curvea gives the time evolution for the
initial state with M (0)521, and curveb gives the time
evolution for the initial stateM (0)511/3. The slope of
curvesa and b are 0.316 and 0.035, respectively. On t
other hand, from the plot of the second-order cumula
which gives a direct value for the dynamical critical exp

FIG. 4. Log-log plot of the absolute magnetizationM (t) vs
time, in units of Monte Carlo steps~MC’s!, at the critical tempera-
ture of the Baxter-Wu model. Curvea shows data points for
M (0)521, and curveb the initial magnetizationM (0)51

1
3 . The

straight lines give the best fit to the data points.
. B

cl.
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nent z, we obtain z51.38 @M (0)521# and z52.33
@M (0)511/3#. Relating these values with those found f
the slopes of Fig. 4 we found thatb/n50.44 (M (0)521)
and b/n50.08 (M (0)511/3). Although the state with
M (0)521 be completely ordered, the results obtained
very bad. On the other hand, if the initial state is selec
from the ground-state set, it gives good results, even if i
not completely ordered, as is the case of curveb in Fig. 1.
Usually, the exponentz is determined by the long-time re
gime of the relaxation process by measuring the decay of
magnetization of the system. This procedure presents s
difficulties because at the critical point the relaxation tim
are very long, and we need simulate very large system
obtain a reliable value ofz. The present method, that exploi
the initial stages of evolution of the system, is free of t
critical slowing down difficulties, and can be applied to sy
tems not too large. The price paid using this method is
statistics: we need to consider a very large number
samples in order to obtain critical exponents almost free
noise.

IV. CONCLUSIONS

We have employed the short-time dynamics to investig
the critical properties of the Baxter-Wu model on a triangu
lattice. Using Monte Carlo simulations with the Glaub
transition rate, we found static critical exponentsb and n
that agree with the exact ones known for this model. We a
determined the dynamical critical exponentz of the model; to
the best of our knowledge, an estimate of this exponent
the Baxter-Wu model has not yet been obtained. Althou
the two-dimensional Ising model and the Baxter-Wu mo
present different Hamiltonian symmetries, belonging to d
ferent equilibrium universality classes, they appear to exh
the same dynamical critical behavior. We also have sho
that the initial value of the magnetization is irrelevant for t
scaling relations involved in the relaxation process. Ho
ever, the initial configuration must be one chosen from
ground state of the model.
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